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ABSTRACT Understanding the information processing ability of signal transduction pathways is of great importance because
of their crucial roles in triggering various cellular responses. Despite continuing theoretical investigation, some important
aspects of signal transduction such as a transient response and its connection to stochasticity originating from a small number
of molecules have not yet been well understood. It is, however, through these aspects that unexpected and nontrivial properties
of the information processing emerge. In this article, we analyze the transient behavior of a simple signaling cascade by taking
into account the stochasticity originating from the small number of molecules. We identify several properties of the signaling
cascade that emerge as a result of the interplay between the stochasticity and transient dynamics of the cascade. We
specifically demonstrate that each step of the cascade has an optimal number of signaling molecules at which the average
signal amplitude becomes maximal. We further investigate the connection between a finite number of molecules and the ability
of the cascade to discriminate between true and error signals, which cannot be inferred from deterministic descriptions. The
implications of our results are discussed from both biological and mathematical viewpoints.

INTRODUCTION

Recent advances in systems biology have shed new light on

the dynamical aspects of intracellular phenomena (1–4). The

dynamical aspects of signal transduction pathways and their

information processing capabilities are of particular interest

due to their roles in triggering dynamic cellular responses (5,6).

Intracellular signal transduction pathways are often

viewed as combinations of several common motifs of signal

transduction, such as the MAP kinase cascade (7). It is there-

fore important to elucidate the properties of each motif,

including input-output relations for various types of inputs

and parameter dependencies of these relations.

Mathematical analysis has contributed to clarifying such

properties (8–10). The mathematical modeling of signal

transduction pathways was initiated by the pioneering work

of Goldbeter and Koshland three decades ago (11,12). Since

then, various mathematical models have been proposed.

Some focus on modeling and analyzing specific pathways

(13–16). Others attempt to elucidate general properties in an

abstract model of signaling cascade (17–24). Overall, prop-

erties such as sensitivity and specificity were used to evaluate

the performance of the pathways (9,11,18).

Most of the models, however, are devoted to the analysis

of the stationary responses to constant input signals (11,12,

17,18,21,25). As a result, relatively little is known about the

transient dynamics of signaling pathways. Pioneering work

in this area was carried out by Heinrich et al. (20), who

conducted extensive theoretical analysis on the transient

behaviors of signal transduction pathways from a determin-

istic viewpoint. They investigated the relation between the

transient dynamics of the cascade and various structures such

as feedback interactions and crosstalk with other pathways,

which appear prominently in actual cells.

However, transient dynamics of signal transduction path-

ways has not been studied well from the stochastic viewpoint.

The experimental evidence for stochasticity in intracellular

reactions is now rapidly accumulating (26–30). The stochas-

ticity originating from a small number of molecules has been

attracting particular interest, and the impact of such stochas-

ticity in genetic networks has been intensively investigated

(31–38). This stochasticity may also considerably influence

intracellular signal transduction because the signaling mole-

cules, such as enzymes and transcription factors, are proteins

whose numbers are often small in a cell. For example, a

dendritic spine of a Purkinje cell has a volume of 10�19(m3)

and so 1 mM of a chemical corresponds to 60 molecules, and

100 nM corresponds to six molecules (39).

Nevertheless, only a few studies have been conducted on

the potential effects of stochasticity on the performance of

intracellular signal transduction pathways (40–44). Further-

more, the scope of these few studies was restricted to the

influence of stochasticity on the stationary responses of path-

ways to constant inputs. However, it can be through the

interplay of two dynamical aspects of pathways, transient

behavior and stochasticity, that unexpected and nontrivial

properties of the information processing functions emerge.

In this article, we analyze the transient behavior of a simple

signaling cascade by taking into account the stochasticity

originating from small numbers of molecules. From our
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analysis we identify several properties of the signaling

cascade that emerge as a result of the interplay between the

stochasticity and the transient dynamics of the cascade.

This article is organized as follows. In the next section, we

show the details of the signaling cascade to be analyzed in

this article. Then, deterministic and stochastic models of the

cascade, a method for their numerical calculation, and

several characteristics for transient dynamics are introduced.

Finally, we examine the transient responses of the signaling

cascade to binary inputs by focusing on the dependence on

the number of the signaling molecules, the input intensity,

and the cascade step.

We demonstrate using numerical simulations the emer-

gence of two novel properties of the signaling cascades: signal

amplification and the discrimination between true and error

signals. We further demonstrate that the appearance of these

properties depends strongly on the number of the signaling

molecules, the number of cascade steps, and the input

intensity.

MODEL AND METHODS

A signaling cascade

A schematic diagram of the signaling cascade we investigate in this article is

shown in Fig. 1. The cascade is composed of M signaling molecular species

whose numbers are assumed to be constant and equal to N for all steps of the

cascade.

Each signaling molecule has two states, inactive and active. Inactive

molecules in the (i1 1)th step are catalytically activated by active ones in the

ith step, and the molecules in the first step are activated by the input to the

cascade. The activated molecules at each step become spontaneously inactive.

The number of active molecules in the ith step is designated by ni 2 [0, N],

while xi(t) ¼ ni(t)/N represents the ratio of active molecules in the ith step.

When the number of molecules is large enough, the dynamics of the

cascade can be approximately described by the following deterministic rate

equations:

dx1ðtÞ
dt

¼ kf1
ð1 � x1ðtÞÞIðtÞ � kb1

x1ðtÞ;

dxiðtÞ
dt

¼ kfi
ð1 � xiðtÞÞxi�1ðtÞ � kbi

xiðtÞ; ði$ 2Þ; (1)

where I(t) is the input, kf1
and kb1

are the rates of the activation and

inactivation reactions in the first step of the cascade, and kfi
and kbi

(i $ 2)

are those of the ith step. The term (1 � xj(t)) (j $ 1) is the ratio of inactive

molecules in the jth step, which results from a conservation law of the total

number of molecules in each cascade step.

A stochastic formulation

When the number of signaling molecules, N, is small, stochasticity may have

a considerable influence on the dynamics of the cascade. To describe the

stochastic dynamics of the cascade, we adopt the chemical master equation

(45) as

dPðn; tÞ
dt

¼ +
k

ðWkðn� bkÞPðn� bk; tÞ �WkðnÞPðn; tÞÞ;

(2)

where n ¼ (n1, . . ., nM). In Eq. 2, P(n, t) is the probability that the number of

molecules is n at time t, and bk is a vector of the changes in n induced by the kth

reaction. For odd k, bk ¼ (0,. . ., 0, 1, 0,. . ., 0)T, where all elements except that

of (k1 1)/2th are zero, and T represents the transpose of a vector, and for even

k, bk¼� bk�1. The value Wk(n)dt is the transition probability such that the kth

reaction occurs in the next time interval dt, provided that the number of

molecules is n. The value Wk(n) is assumed to be time-invariant. The (2i� 1)th

and (2i)th reactions, respectively, correspond to the activation and inactivation

reactions of the ith signaling molecules. The value Wk(n) is defined as

WkðnÞ ¼

kf1
IðtÞðN � n1Þ if k ¼ 1

kb1
n1 if k ¼ 2

kfi
ni�1ðN � niÞ=N if k ¼ 2i� 1 for i$ 2:

kbi
ni if k ¼ 2i for i$ 2

8>><
>>:

(3)

To describe the transient dynamics of the cascade we use xi(t), rather than

ni(t), because we will compare the dynamics of the cascade for different

values of N. As defined before, we use the lower-case xi to designate a

nonrandom value of the ratio of active molecules in the ith step. In contrast,

the upper-case Xi represents the random variable of the ratio of active

molecules in the ith step.

Furthermore, we use the following variables to characterize the stochastic

behaviors of the cascade:

P(Xi ¼ xi, t): the marginal probability that Xi ¼ xi at t;
PXi¼0: the marginal probability that Xi ¼ 0 for all t 2 (0,N); and

PXi.0: the marginal probability that Xi . 0 for at least one t 2 (0,N)

(so PXi.0 ¼ 1 � PXi¼0).

In this analysis, we focus on transient behaviors of the signaling cascade.

Although various patterns of transient inputs exist, we select a binary input

with duration t for simplicity. This choice does not lack biological validity

since inputs to cells can often be regarded as binary approximately. Spe-

cifically, we assume that all signaling molecules are inactive for t 2 (�N,0),

and at time t ¼ 0 the cascade receives a constant binary stimulation I0 for a

duration t, i.e., I(t) ¼ I0 for t 2 [0,t].

FIGURE 1 Schematic diagram of the signaling cascade. The input signal

activates the inactive signaling molecules of the first step. The activated

signaling molecules of the ith step catalytically activate the inactive signaling

molecules of the (i 1 1)th step. The activated molecules of each step

spontaneously become inactive.
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Characterization of the transient response of
the cascade

For each step of the cascade, we introduce the following four characteristics

of the transient response:

1. Signal integral, I(N,i,t): the temporally integrated response of Xi(t), i.e.,

I(N,i,t) ¼
RN

t¼0
dtXi(t).

2. Signal amplitude, A(N,i,t): the maximal response of Xi(t), i.e.,

A(N,i,t) ¼ maxt2(0,N) Xi(t).

3. Signaling time, T(N,i,t): the time at which Xi reaches its maximum

(defined only when the signal amplitude is greater than zero).

4. Signal duration, D(N,i,t): the signal integral over the signal amplitude,

i.e., D(N,i,t) ¼ I(N,i,t)/A(N,i,t) (defined only when the signal am-

plitude is greater than zero).

N, i, and t are the number of molecules, the cascade step, and the input

duration, respectively. These characteristics are schematically represented in

Fig. 2 A. Since these variables vary for each sample path of the cascade, they

are random variables.

To compare the responses of the stochastic and deterministic models, we

use the relative values of the characteristics defined as the ratio of the

stochastic values to their deterministic counterparts obtained from Eq. 1.

Thus, for any given N, the relative signal integral, the relative signal

amplitude, the relative signaling time, and the relative signal duration are

defined respectively as RI ðN; i; tÞ ¼ IðN; i; tÞ=I detði; tÞ, RAðN; i; tÞ ¼
AðN; i; tÞ=Adetði; tÞ, RT ðN; i; tÞ ¼ T ðN; i; tÞ=T detði; tÞ, and RDðN; i; tÞ ¼
DðN; i; tÞ=Ddetði; tÞ, where Idetði; tÞ, Adetði; tÞ, T detði; tÞ, and Ddetði; tÞ are

deterministic counterparts of the signal integral, the signal amplitude, the

signaling time, and the signal duration that are defined as
RN

t¼0
dtxiðtÞ,

maxt2(0,N) xi(t), the time at which xi reaches its maximum, and

Idetði; tÞ=Adetði; tÞ, respectively.

The averages of the first two relative variables are designated by

ÆRI(N,i,t)æ and ÆRA(N,i,t)æ. Since the signaling time and the signaling

duration can be defined only when the signal amplitude is greater than zero,

the conditional averages ÆRT ðN; i; tÞæc, and ÆRDðN; i; tÞæc are used to

evaluate the transient responses, where the condition is Xi . 0 for at least

certain t2(0,N).

The signaling time, the signal duration, and the signal amplitude we use

in this work are closely related to those used by Heinrich et al. (20), which can

specifically be extended to the stochastic versions as ~TT ðN; i; tÞ[
RN

t¼0
tXiðtÞ=

IðN; i; tÞdt, �DDðN; i; tÞ[
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiRN

t¼0
t2XiðtÞ=IðN; i; tÞdt � ~TT ðN; i; tÞ2

q
, and

�AAðN; i; tÞ[ IðN; i; tÞ=2 �DDðN; i; tÞ. Since we observed no qualitative dif-

ferences in our results when using these definitions, we only use A(N,i,t),

T(N,i,t), and D(N,i,t) in the following analysis.

Numerical methods

For numerical calculations of the time series of Xi(t) and the statistics of the

characteristics defined above, we use Gillespie’s algorithm, a Monte Carlo

method to numerically calculate sample paths obeying the chemical master

equation (46). The statistics of the characteristics are calculated from 10,000

independent samples.

Reaction rate constants

Reaction rate constants are set as follows: kf1
¼ 1=ð2KDÞ, kb1

¼ 1=2,

kfi
¼ ð11KDÞ=ð2KDÞ (i $ 2), and kbi

¼ 1=2 (i$ 2), where KD ¼ kb1
=kf1

is

the dissociation constant in the first step. According to these settings, if KD is

fixed to a constant value, the average responses at all steps to a stationary

input with I0 ¼ 1 are the same regardless of the number of molecules N. The

results in the following analysis are obtained mainly with KD ¼ 1, but we

also examine some cases with different values of KD.

Input signal

The binary input amplitude I0 is fixed at one for all simulations. The input

duration t is calculated so that the maximum activity of the first step of the

FIGURE 2 (A) The definitions of the

signal integral, the signal amplitude, the

signaling time, and the signal duration.

The solid line represents a sample path

of the fourth step of the cascade for

N¼ 50. The signal integral is defined as

the area of the sample path, which is

designated with dark gradation. The

signal amplitude is the maximum ratio

of the active signaling molecules. The

signaling time is defined as the time at

which the maximum is reached. The

signal duration is the width of a rectan-

gle whose area and height are, respec-

tively, equal to the signal integral and

the signal amplitude. (B) The relation

between t and tp. The value t is cal-

culated so that the maximum activity of

the first step of the cascade in the de-

terministic case becomes tpN. The left

figure is the time-series of an input and

the right one is the response in the first

step of the cascade to the input. (C) The

relation between t and tp for different

values of KD, where t ¼�log(1 � (1 1

KD)tp)/(kf1 1 kb1).
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cascade in the deterministic case (see Eq. 1) is tpN (tp2[0,1]) (see Fig. 2 B).

Thus, t ¼ �log(1 � (1 1 KD)tp)/(kf1 1 kb1). We use tp as a control

parameter of the input intensity rather than t because tp has a more intuitive

meaning than t (see Fig. 2 C). Accordingly, the characteristics of the

transient response such as I(N,i,t) are rewritten as I(N,i,tp).

In the next section, we first examine the relation between the signal

amplitude and the number of signaling molecules N for different input

intensity tp. Second, we show that a strong input with large tp and a weak

input with small tp can be discriminated through the cascade when the

number of molecules N is small. Since the value of tp determines the activity

of the first step of the cascade as defined above, we interpret an input with

large tp as a true signal, and an input with small tp as an error signal.

RESULTS

An optimal number of molecules for
signal amplification

Fig. 3 shows typical sample paths obtained by numerical

simulations for N ¼ 50 and N ¼ 10,000 with tp ¼ 0.2.

The behavior of the cascade changes with N, because the

stochasticity in the dynamics depends strongly on the num-

ber of molecules. For N ¼ 50, the probability that the

response is more amplified than the corresponding determin-

istic solution obtained from Eq. 1 is high. For N ¼ 10,000,

the shapes of the stochastic response hardly change among

sample paths, and almost coincides with the deterministic

one.

We quantify this amplification of the response for small N
by the average of the relative signal amplitude, ÆRA(N,i,tp)æ.
For the first step of the cascade, ÆRA(N,i,tp)æ is monoton-

ically decreasing with the increase in N, as shown in Fig. 4.

The amplification of ÆRA(N,i,tp)æ can be attributed to the

fluctuations originating from the small number of the sig-

naling molecules, since RA(N,i,tp) is defined as the relative

maximal response. When N ¼ 10, the probability that all N
molecules of the first step become active is significant.

However, this probability decreases as N increases, and is

negligible for N ¼ 10,000. As a result, the average of the

signal amplitude ÆRA(N,i,tp)æ of the first step decreases

monotonically as N increases.

Interestingly, however, the curves of ÆRA(N,i,tp)æ become

bell-shaped for i $ 2. This indicates that each cascade step

has an optimal number of molecules Nopt
i for the signal

amplification when i$ 2. The value of Nopt
i depends both on

the cascade step i and the input intensity tp. This emergence

of an optimal number of molecules can be attributed to the

interplay between the probability of signal loss and that of

signal amplification. As discussed for i ¼ 1, the fluctuations

originating from the small number of molecules are the

driving force of the signal amplification. However, if the

signal is not detected accidentally at a certain cascade step

i . 1, that is, Xi ¼ 0 for all t2(0,N), the activity of the all

steps downstream of the ith step becomes 0. Mathematically,

the signal loss at the cascade step j . 1 is defined as Xi ¼ 0

for all t2(0,N) holds at a certain cascade step i # j. Thus,

large fluctuations due to the small number N also increase the

FIGURE 3 Sample paths (solid lines) of responses of the cascade for

N¼ 50 and N¼ 10,000 at steps 1, 3, and 5 with corresponding deterministic

solutions (dashed lines). The amplification of signals and the truncation of

the tails of the responses are observed for N ¼ 50.

FIGURE 4 The average relative signal amplitude ÆRA(N,i,tp)æ as a

function of N for different steps of the cascade. The value tp is set to be 0.2.

Optimal Number of Signaling Molecules 2075

Biophysical Journal 91(6) 2072–2081



risk of signal loss through the cascade. This risk decreases as

N increases, but the driving force for the signal amplification

also decreases as N increases, as reflected in the convergence

for large N of the average signal amplitude to that obtained

from the deterministic model, i.e., limN/NÆRA(N,i,tp)æ ¼ 1.

Thus, the emergence of the optimal number of molecules

Nopt
i for the signal amplification is a consequence of the

balance between the reliability of signal propagation and the

amplification of signals by fluctuations. In addition, for

higher step numbers i, the risk of signal loss is greater and

consequently the peak of the ÆRA(N,i,tp)æ curve shifts to the

right as shown in Fig. 4. This risk of signal loss is further

investigated in the next section.

In the above analysis, the input intensity tp is fixed at tp ¼
0.2, but we can observe the emergence of a peak in the

ÆRA(N,i,tp)æ curve for i $ 2 for different values of tp. Fig. 5

shows the ÆRA(N,i,tp)æ curves for several tp values at

cascade steps 3, 5, 7, and 9. The position of the peak shifts to

the right as tp decreases. This is attributed to the decrease in

the average number of activated molecules as tp decreases.

Thus, the probability of signal loss becomes high, which

leads to the shift of the peak to the right.

Interestingly, we find that, for each cascade step all the

ÆRA(N,i,tp)æ curves for different tp seem to intersect at one

point. This suggests the existence of a threshold value of N,

Nu, below which ÆRA(N,i,tp)æ for a stronger input becomes

larger, while ÆRA(N, i, tp)æ converges to 1 regardless of tp

for N� Nu. Therefore, when N, Nu and a cell receives two

inputs with different intensities, the ratio of the average

output for the stronger input to that for the weaker one be-

comes larger compared to deterministic situations. The value

of Nu increases almost exponentially as the cascade step i

increases (see Fig. 6). In other words, the range of N that sat-

isfies N, Nu becomes wider for larger i. The same tendency

is seen for different values of KD, as shown in Fig. 6.

An optimal number of molecules for
signal discrimination

We have evaluated the influence of stochasticity in terms of

the average response of the cascade. However, the average

response of a cell provides us with only partial information

on each response. Thus, more detailed analysis on each

response is required when the output of the cascade is critical

to the fate of the single cell. One of the most important

properties revealed by focusing on the behavior of each

response is the probability that signals are lost through the

cascade. This signal loss is attributed not only to the

stochasticity originating from finite N but also to the fact that

N ¼ 0 is an absorbing boundary.

The probability of signal loss largely depends on the input

intensity tp. The probability is high when tp is small and vice

versa. This suggests a capability in the signaling cascade to

actively discriminate true signals with large tp from error

signals with small tp in a probabilistic manner. To quanti-

tatively evaluate the performance of the signal discrimination

by the cascade, we use the probability of the signal loss,

PXi¼0. Since PXi¼0 cannot be zero for finite N, the evaluation

of the signal discrimination function requires comparison

between PXi¼0 for true signals and PXi¼0 for error signals.

For this comparative evaluation, we introduce concepts of

false-positive and false-negative errors (47).

The false-positive error in this article means that the

cascade responds to error signals. The probability that this

FIGURE 5 The ÆRA(N,i,tp)æ curves

for different values of the input intensity

tp at cascade steps (A) 3, (B) 5, (C) 7, and

(D) 9.
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error occurs is PFPE [PXi.0 for error signals. In a sense, a

cascade with a low false-positive error is ‘‘specific’’ because

the cascade responds exclusively to the true signals. In

contrast, the false-negative error means that the cascade fails

to respond to true signals. The probability that this error

occurs is PFNE [PXi¼0 for true signals. A cascade with a low

false-negative error is viewed to be ‘‘reliable’’ because the

cascade can detect true signals with high probability. The

values PFPE and PFNE are negatively correlated, as shown in

Fig. 7, where tp values for true and error signals are 0.2 and

0.01, respectively. In other words, the specificity of the sig-

naling cascade trades off with the reliability of the cascade.

As a result, the evaluation of the total performance of a

cascade depends on a function required for that cascade.

To incorporate a biased requirement for the cascade into

the evaluation, we introduce an indicator of signal discrim-

ination D ¼ (1 � PFPE)a(1 � PFNE)b. Larger D means the

higher degree of the signal discrimination. Therefore, if the

exponent a is large, then the reduction of the false-positive

error is preferred. In contrast, if the exponent b is large, the

reduction of the false-negative error is favored. By plotting D
as a function of N for various values of a and b, we observe

that it has a peak for N being several decades, as shown in

Fig. 8. This property indicates that there exists an optimal

number of signaling molecules for each cascade step with

respect to the signal discrimination. As expected, the peak

shifts to the left when a becomes large, because large a
biases the requirement of the cascade to reduce the false-

positive error, while the peak shifts to the right when b
becomes large because large b places a disproportionate em-

phasis on reduction of the false-negative error. Similar phe-

nomena can be observed for different values of KD and tp.

Enhancement of the reliability and the specificity of the

signal transduction pathway can be a crucial process for

cells. Several biological mechanisms such as high sensitivity

for signals, checkpoint, and kinetic proofreading mecha-

nisms have been proposed for enhancement of specificity

(47). Reliability may be enhanced by redundant architectures

of signal transduction pathways and few sequential reactions

(47).

While these mechanisms relate specific network structures

or detailed chemical processes to the functions of the signal

discrimination, none of them are related to the number of

signaling molecules. Our results indicate that the number of

signaling molecules can be an important control parameter

for the signal discrimination. Furthermore, by introducing

the concepts of the false-negative and false-positive errors,

we have shown that the specificity and the reliability of the

cascade can be evaluated quantitatively. Since systems biol-

ogy places great emphasis on quantification of intracellular

phenomena, the mathematical formulation used in this work

may provide us with another possible interpretation of ex-

perimentally quantified properties of pathways.

Other properties

In addition to signal amplification and discrimination, there

are other properties that are acquired by a cascade when the

number of signaling molecules is small. The first property is

a quicker response. Fig. 9 A shows the relation between the

average of the relative signaling time ÆRT ðN; i; tpÞæc and the

number of molecules N. For smaller N, ÆRT ðN; i; tpÞæctends

to be smaller than one. This property means that a quicker

response can be achieved for smaller N, which is usually a

desirable property of signal transduction pathways.

Another property is shorter response duration. Fig. 9 B
shows the relation between the average of the relative signal

duration ÆRDðN; i; tpÞæc and N. ÆRDðN; i; tpÞæcis a monotone

increasing function with N. This is because the tail of the

response tends to be truncated for small N, which is also a

result of the stochasticity and the absorbing boundary at N ¼
0. Although short signal duration is regarded as a desirable

FIGURE 6 The relation between Nu and the cascade step i for different KD

values. The value Nu increases exponentially with i.

FIGURE 7 The probability of the false-positive error PFPE for error

signals with tp ¼ 0.01 and the false-negative error PFNE for true signals with

tp ¼ 0.2 at the cascade steps 1, 2, 3, and 7.
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property in some cases (20), we have no standard criterion by

which to evaluate this. On the one hand, this property may

enhance the ability of the downstream cascade to distinguish

consecutive multiple inputs; on the other hand, the shortened

signal duration may reduce the probability of the detection

by downstream reactions. The requirement for short or long

signal duration strongly depends on properties in the down-

stream reactions. Thus, this result just indicates that N can be

a control parameter for the signal duration.

SUMMARY AND DISCUSSION

Summary of results

In this study, we have examined the performance of signal

transduction in a signaling cascade by focusing on the

influence of three parameters: the number of signaling

molecules N, the input intensity tp, and the cascade step i.
We have found that each step of the signaling cascade has an

optimal number Nopt
i of molecules at which the average

signal amplitude of the response is maximized for i$ 2. This

optimal number Nopt
i was shown to be a consequence of the

balance between the failure of signal propagation by signal

loss and the signal amplification by fluctuations in stochastic

reactions. In addition, we have demonstrated that the cascade

step i and the input intensity tp are two important control

parameters for the determination of the value of Nopt
i .

We have also shown that a small number of signaling

molecules endows the cascade with an ability to actively

discriminate true signals and error signals. A tradeoff relation

is found between reliable signal transduction with low false-

negative errors and specific signal transduction with low

false-positive errors. In addition, we have shown that the

specificity and the reliability are balanced for an optimal N
even if a biased requirement for either the specificity or the

reliability is imposed. Furthermore, several properties of the

cascade such as the signal duration and the signaling time are

strongly influenced by the stochasticity originating from the

small number of signaling molecules. By a detailed analysis

of the probability of signal loss, we have clarified that the

FIGURE 8 The indicator of signal discrimination D[ (1 � PFPE)a(1 � PFNE)b as a function of N for different values of a and b. The vertical and horizontal

axes in each figure indicate the value of D and the number of molecules N, respectively. Red curves with crosses, green curves with crosses, blue curves with

asterisks, and purple curves with open boxes represent the values of D for the first, the second, the third, and the seventh steps of the cascade, respectively.
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mechanism of these phenomena is the interplay between

stochasticity due to the small number of N and the absorbing

boundary at N¼ 0. These results have several biological and

mathematical implications.

Biological implications

The small number of molecules is often viewed as a major

source of disturbance to reliable functioning of intracellular

networks due to the stochasticity it generates (48), but it has a

strong biological advantage from the viewpoint of energet-

ics. Since synthesis and degradation of molecules are usually

associated with energy consumption, cells need to consume

energy to maintain a large number of molecules. In addition,

each phosphorylation reaction required for activation of

signaling molecules also consumes ATP. Thus, activating

more signaling molecules requires more energy. This ener-

getic requirement may impose an evolutionary force for the

small number of molecules in cells. The extremely small

number of lactose repressor may be an indication of such

evolutionary force (49,50). Consequently, the actual number

of signaling molecules is usually expected to be determined

by the balance between this energetic requirement and reli-

able signal processing facilitated by a large number of mol-

ecules. However, according to our results, some signal

processing abilities such as signal amplification and signal

discrimination can be enhanced by a small number of sig-

naling molecules. Therefore, we suggest that the enhance-

ment may be another evolutionary force for the selection of

processing with the small number of intracellular signaling

molecules.

The order of the total number of proteins in actual cells

widely ranges, e.g., from 10 to 106 in yeast (51). Compared

with this experimental data, the optimal number of signaling

molecules shown in this work seems to be small. However,

intracellular molecules are not distributed homogeneously in

a cell and all reactants in a cell do not always participate in a

reaction (52,53). Rather, intracellular reactions occur het-

erogeneously in a cell. This heterogeneity is expected to be

facilitated by slow diffusion in a cell (54,55). In addition,

localization by anchor proteins, scaffold proteins, or compart-

mentation may control the spatial organization of intracel-

lular reactions (56–59). When the number of signaling

molecules participating in a signal transduction is restricted

by this spatial heterogeneity, the effective number of mol-

ecules may be far below the total number of molecules in a

cell, and our results may be interpreted as the local phe-

nomena in cells. Since the study of spatial orchestration of

intracellular reactions is in an early phase of theoretical as

well as experimental investigation (55,60), our result pro-

vides a theoretical clue for future research. Furthermore, the

probabilistic transduction of signals shown in this article

may be linked to more complicated biological processes.

Evidence of the heterogeneous responses of cells to

stimuli has been accumulating recently. While the origin of

such heterogeneous responses is typically attributed to the

stochastic activations of genes, our result suggests that the

probabilistic transmission of signals by signaling cascades

can be another source of the heterogeneity. Since it is still

experimentally difficult to discriminate the origins of the

heterogeneity, it is indispensable to include the probabilistic

transmission of signals in the list of candidates for the origins

of the heterogeneity. From the experimental viewpoint, this

could be indirectly tested by simultaneously observing the

responses of the target genes and the activities of promoters

that are the first receivers of the extranuclear signals trans-

mitted by signal transduction pathways.

One issue that is not addressed in this article is the

influence of variability in the number of signaling molecules

itself due to gene expression. Since the timescale of signal

transduction is typically much faster than that of the change

in the numbers of molecules through gene expression, the

numbers of each kind of molecule can be regarded as

constant during signal transduction. However, this number

FIGURE 9 (A) The average of the relative signaling time ÆRT ðN; i; tpÞæc
as a function of N for different steps of the cascade. The value tp is set to be

0.2. (B) The average of the relative signal duration ÆRDðN; i; tpÞæc as a

function of N for different steps of the cascade. The value tp is set to be 0.2.
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can be distributed around N. As demonstrated in this article,

the number of signaling molecules is a key control parameter

for signal amplification and discrimination abilities. Thus, it

may be possible that the number of signaling molecules is

regulated so that it achieves the optimal performances of the

signal amplification and discrimination for given conditions.

However, this controllability of the performance of the

signaling cascade by the number of molecules entails the

sensitivity to the fluctuations of the number of molecules.

Although we have confirmed that small variations in the

number of signaling molecules have little influence on our

results, the detailed relation between the controllability of the

performances and the robustness to the fluctuations in the

number of each kind of signaling molecule is an important

future problem.

Mathematical implications

From the mathematical viewpoint, the results shown in this

article can be attributed to the interplay between two dif-

ferent effects of the finite number of signaling molecules.

One is the stochastic occurrence of intracellular chemical

reactions originating from the finite number of reactants. The

other is the absorbing boundary at N¼ 0, which is due to the

architecture of the signaling cascade. Neither of these effects

is sufficient individually. In that respect, the phenomena

shown in this study are fundamentally different from well-

known stochastic phenomena such as stochastic resonance.

One of a few important studies where both the stochasticity

and the absorbing boundary are considered addresses the

stationary distribution of the plasmid copy number. When

the plasmid copy number is small, one of the daughter cells

cannot receive a copy of the plasmids from the mother

cell during cell division (61). Another study addresses the

discreteness-induced state transitions in autocatalytic cycles,

and shows the emergence of new states induced by discrete

numbers of components (62). In contrast to these works, we

have focused on how the transient dynamics of the signaling

cascade and the influence of the small number of signaling

molecules can enhance the performance of information

processing.

The influence of the boundary condition at N¼ 0 analyzed

in this article cannot be handled by the simple linearization

methods of stochastic chemical reactions, which have been

intensively investigated (63–65). Since most intracellular

reactions are highly nonlinear and the existence of such

boundary conditions in intracellular reactions is prevalent

when the number of molecules is small, there is a need to go

beyond these linear descriptions in order to elucidate

profound roles of stochasticity in cellular activities.
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